Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride.
نویسندگان
چکیده
Batch tests were performed to evaluate the effects of inorganic anion competition on the kinetics of arsenate (As(V)) and arsenite (As(III)) removal by zerovalent iron (Peerless Fe0) in aqueous solution. The oxyanions underwent either sorption-dominated reactions (phosphate, silicate, carbonate, borate, and sulfate) or reduction-dominated reactions (chromate, molybdate, and nitrate) with Peerless Fe0 in the presence of As(V) or As(III), relative to chloride. Pseudo-first-order rate equations were found to describe satisfactorily both As(V) and As(III) removal kinetics in the presence of each competing anion. Of the oxyanions tested for Peerless Fe0 in the pH range from 7 to 9, phosphate caused the greatest decrease in As removal rate (7.0 x 10(-3) to 18.5 x 10(-3) h(-1)) relative to chloride (34.9 x 10(-3) to 36.2 x 10(-3) h(-1)). Silicate, chromate, and molybdate also caused strong inhibition of As removal, followed by carbonate and nitrate, whereas borate and sulfate only caused slight inhibition to As(III) removal. Present results show that Peerless Fe0 may be an excellent permeable reactive barrier medium for a suite of mixed inorganic contaminants. The anion competing effects should be considered when designing permeable reactive barriers composed of zerovalent iron for field applications to remediate As(V) and As(III).
منابع مشابه
Arsenite and Arsenate Removal from Contaminated Groundwater by Nanoscale Iron–Manganese Binary Oxides: Column Studies
Fixed-bed sorption process can be very effective at removing arsenic from contaminated groundwater. In this study, a continuous operation was demonstrated for the removal of both arsenite [As(III)] and arsenate [As(V)] from aqueous media in a column packed with nanoscale iron–manganese binary oxides (NIM). Treatment performance of the sorbent was quantified by upflow column experiments at diffe...
متن کاملAnalysis of anion constituents of urine by inorganic capillary electrophoresis.
Inorganic capillary electrophoresis (ICE) is a new separations technology which melds the technique of classical electrophoresis with the separations approach of ion chromatography. Matrices which have been difficult to deal with using ion chromatography have proven amenable to analysis by ICE. The simultaneous analysis of weak acid anions, oxalate and citrate and inorganic anions, chloride, su...
متن کاملCoexisting arsenate and arsenite adsorption from water using porous pellet adsorbent: Optimization by response surface methodology
Mesoporous pellet adsorbent developed from mixing at an appropriate ratio of natural clay, iron oxide, iron powder, and rice bran was used to investigate the optimization process of batch adsorption parameters for treating aqueous solution coexisting with arsenate and arsenite. Central composite design under response surface methodology was applied for optimizing and observing both individual a...
متن کاملPreparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.
A study on the removal of arsenic from real life groundwater using iron-chitosan composites is presented. Removal of arsenic(III) and arsenic(V) was studied through adsorption at pH 7.0 under equilibrium and dynamic conditions. The equilibrium data were fitted to Langmuir adsorption models and the various model parameters were evaluated. The monolayer adsorption capacity from the Langmuir model...
متن کاملNitrate Removal from Aqueous Solutions using Green and Biodegradable Zerovalent Iron Nanoparticles
Background and objectives: Zerovalent iron nanoparticles (ZVIN) had high potential for nitrate removal from aqueous solutions due to high surface area and reactivity of them. The aim of this study was nitrate removal from aqueous solutions using environmentally friendly stabilized ZVIN. Methods: ZVIN were synthesized via chemical reduction by sodium borohydride. In order to preventing of ZVIN f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 35 22 شماره
صفحات -
تاریخ انتشار 2001